(资料图片仅供参考)

近日,中科院大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。

研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明,通过提升量子点与分子间的波函数交叠,在较低能量转移驱动力的条件下,仍可获得较高的TET效率。根据化学热力学平衡,在这种情况下,从分子三线态回到量子点激子态的吸热反向传能(rTET)速率也较快。当rTET速率远大于三线态本身衰减速率时,大多数三线态都会重新回到量子点激子态辐射出延迟发光(TADPL),原理上类似于有机分子中的热活化延迟荧光现象(TADF)。团队前期也观测到可见波段的TADPL(ACS Energy Lett.,2021),并揭示了其熵调控机制(JPCL,2021)。

近红外光在生物成像、光纤通讯、国防安全等诸多领域具有重要意义。基于量子点—有机分子杂化体系的近红外TADPL迄今未见报道,其根本难点在于有机分子的能隙定则:能量越低的激发态,其非辐射衰减速率一般越快。这就要求rTET的速率足够快,才能与之有效竞争。针对该难题,团队通过同时优化量子点和三线态受体分子的手段,采用低毒CuInSe2-并四苯的体系,观测到近红外波段(约900nm)的TADPL。研究发现,在室温下TADPL寿命达到60微秒,相比于CuInSe2量子点激子态的寿命提升了3个数量级。得益于量子点本身高达40%的发光效率,TADPL的量子效率可达9%。这些参数可媲美可见光波段的TADPL体系。得益于CuInSe2量子点无重金属的优势,该体系相比传统的铅基近红外量子点可能具有更好的应用前景。

吴凯丰团队近年来致力于量子点与有机分子间的电荷/能量转移动力学研究:揭示了量子点与有机分子电荷转移中的累积电荷效应(JACS,2018;JACS,2018),并在单电荷转移体系中观测到Marcus反转区间(Nat. Commun.,2021);揭示了量子点尺寸和分子构型对三线态传能的影响及其物理机制(JACS,2019;Angew,2020);建立了电荷转移介导三线态传能的各类新机制(Nat. Commun.,2020;JACS,2020;Nat. Commun.,2021),并阐明了电子自旋在其中起到的关键角色(JACS,2020;Chem,2022);面向实际应用开发了低毒性的CuInS2、InP和ZnSe等量子点作为各波段的三线态敏化剂(JACS,2019;JACS,2020;ACS Energy Lett.,2022);探索了这些电荷/能量转移机制在光催化合成中的新型应用(Chem,2021;Angew,2022;Angew,2022)。

上述最新工作以“Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是我所1121组博士后何山。该工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。(文/图 何山、杜骏)

文章链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202217287

推荐内容